UDK 517

ON PROBLEMS OF UNIVALENCE FOR THE CLASS TR(1/2)

M. SOBCZAK-KNEĆ, P. ZAPRAWA

In this paper we discuss the class $TR(\frac{1}{2})$ consisted of typically real functions given by the integral formula

$$f(z) = \int_{-1}^{1} \frac{z}{\sqrt{1 - 2zt + z^2}} \ d\mu(t),$$

where μ is the probability measure on [-1,1]. The problems of local univalence, univalence, convexity in the direction of real and imaginary axes are examined. This paper is the continuation of research on $TR(\frac{1}{2})$, especially concerning problems, which results were published in [5].

Let \mathcal{A} denote the set of all functions which are analytic in the unit disk $\Delta = \{z \in \mathbf{C} : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0. Let TR denote the well known class which consists of typically real functions. Recall that the function $f \in \mathcal{A}$ belongs to TR if and only if the condition

$$\Im z \cdot \Im f(z) \ge 0$$
 $z \in \Delta$.

is satisfied.

Rogosinski [4] proved that $f \in TR \iff f(z) = \int_{-1}^{1} k_t(z) \ d\mu(t)$, where $k_t(z) = \frac{z}{1-2zt+z^2}$, and μ belongs to $P_{[-1,1]}$, i.e. the collection of all probability measures on [-1,1]. Similarly Szynal [6] defined the class $TR(\frac{1}{2}) = \left\{ f \in \mathcal{A} : \ f(z) = \int_{-1}^{1} f_t(z) \ d\mu(t), \ \mu \in P_{[-1,1]} \right\}$, where

$$f_t(z) = z \left(\frac{k_t(z)}{z}\right)^{\frac{1}{2}} = \frac{z}{\sqrt{1 - 2tz + z^2}}.$$
 (1)

In this paper Szynal considered the coefficients problems. He proved that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is in $TR(\frac{1}{2})$ then $|a_n| \leq 1$. This fact means that the coefficients of the function $f \in TR(\frac{1}{2})$ are bounded by the same number as the coefficients of functions in the classes CV, CV(i), $ST(\frac{1}{2})$ consisting of convex functions, convex in the direction of the imaginary axis functions, and starlike of order $\frac{1}{2}$ functions, respectively. Moreover, he proved that the functions of the class $TR(\frac{1}{2})$ are typically real, so $TR(\frac{1}{2}) \subset TR$.

We shall point out the property, which in essential manner differs the class $TR(\frac{1}{2})$ from the class TR. However the functions k_t of the class TR are starlike, the functions of the form

$$\alpha k_1 + (1 - \alpha)k_{-1}$$
, $\alpha \in (0, 1)$

are not univalent. These functions are extremal in many univalence problems. One of the most important functions is the function

$$z \mapsto [k_1(z) + k_{-1}(z)]/2 = \frac{z(1+z^2)}{(1-z^2)^2}$$
,

which is used, for example, to determining the domain of univalence or the domain of local univalence for TR.

By analogy to the class TR, the kernel functions f_t of the class $TR(\frac{1}{2})$ are starlike of order 1/2. On the other hand, it is easy to check, that the functions given by the formula

$$\alpha f_1 + (1 - \alpha) f_{-1} , \ \alpha \in [0, 1]$$

are univalent and convex in the direction of the imaginary axis. Hence, these functions are not extremal in the problems concerning univalence.

The classes CVR, CVR(i), $STR(\frac{1}{2})$ (where AR denotes the subclass of a class A consisting of functions having real coefficients) and the class $TR(\frac{1}{2})$ are connected by the following inclusions, namely

$$CVR \subset STR\left(\frac{1}{2}\right) \subset TR\left(\frac{1}{2}\right)$$
 (2)

and

$$CVR \subset CVR(i) \subset TR(\frac{1}{2}).$$
 (3)

The relations (2) result from the equality $\overline{co}\,STR\left(\frac{1}{2}\right)=TR\left(\frac{1}{2}\right)$ given by Hallenbeck [1], where $\overline{co}\,A$ denotes the closed convex hull of A, and the well known theorem of Marx and Strohhäcker .

The fact $\overline{co} CVR = CVR(i)$ (compare [5]), the relation (2) and convexity of the class $TR\left(\frac{1}{2}\right)$ (see [6]) give us (3).

Now, we are going to prove that the class $TR(\frac{1}{2})$ is the essential superclass of CVR, CVR(i) and $STR(\frac{1}{2})$. In order to do this we shall find functions belonging to $TR(\frac{1}{2})$ which are not univalent.

Let us consider the functions

$$F_t(z) = [f_t(z) + f_{-t}(z)]/2, t \in [0, 1].$$

THEOREM 1. For all $t \in (0,1)$ there exist $r_t \in (0,1)$ such that functions F_t are not locally univalent in Δ_r , $r \geq r_t$.

PROOF. Let $t \in (0,1)$.

We have $F'_t(z) = \frac{1}{2} \left[\frac{1-tz}{(1-2tz+z^2)^{\frac{3}{2}}} + \frac{1+tz}{(1+2tz+z^2)^{\frac{3}{2}}} \right]$. Hence, the equality $F'_t(ir) = 0$ is equivalent to

$$\Re(1 - itr)(1 - r^2 + 2tir)^{\frac{3}{2}} = 0.$$
(4)

Using

$$\sqrt{1 - r^2 + 2tir} = \sqrt{\frac{1}{2} \left(1 - r^2 + \sqrt{(1 - r^2)^2 + 4t^2r^2} \right)} + i\sqrt{\frac{1}{2} \left(-1 + r^2 + \sqrt{(1 - r^2)^2 + 4t^2r^2} \right)}$$
(5)

the condition (4) could be written as

$$\left[1 - r^2 - tr(1 - 2tr + r^2)\right] \left[1 - r^2 + tr(1 + 2tr + r^2)\right] + (1 - r^2)(1 + t^2r^2)\sqrt{(1 - r^2)^2 + 4t^2r^2} = 0.$$

Let us denote the left hand side of (5) by G(t,r). The function G is continuous with respect to both variables. Moreover, G(t,0)=2 and $G(t,1)=-4t^2(1-t^2)<0$ for $t\in(0,1)$. We conclude that there exist $r_t\in(0,1)$ such that $G(t,r_t)=0$.

Now, we determine the smallest number r_t , which was described above. Solving the system of equations

$$\begin{cases} G(t,r) = 0\\ \frac{\partial G}{\partial t}(t,r) = 0 \end{cases}$$

we obtain

$$\begin{cases} G(t,r) = 0 \\ t^2 = \frac{-5 + 6r^2 + 3r^4}{8r^2} \end{cases}.$$

Hence $(1+r^2)^3(7-9r^2)=0$ and consequently $r=\frac{\sqrt{7}}{3}=0,88...$ We have proved that

COROLARY. The radius of locally univalence r_{LU} of $TR(\frac{1}{2})$ satisfies the condition $r_{LU} \leq \frac{\sqrt{7}}{3}$.

This means that there are the functions of the class $TR(\frac{1}{2})$ which are not univalent in each disk Δ_r , $r > \frac{\sqrt{7}}{3}$.

In the proof of the following theorems we will apply the Krein-Milman Theorem. This theorem concerns the extremalization of linear and continuous functionals in a given $A \subset \mathcal{A}$. By this theorem, such real functionals attain the lowest and the greatest values on the extreme points of A.

Theorem 2. If $f \in TR\left(\frac{1}{2}\right)$ then $\Re \frac{f(z)}{z} > \frac{1}{2}$ for $z \in \Delta$.

In the proof of Theorem 2 we use the following lemma.

LEMMA 1. Let
$$\frac{f(z)}{z} = \left(\frac{g(z)}{z}\right)^2$$
. Then $f \in ST \iff g \in ST(\frac{1}{2})$.

PROOF OF THEOREM 2.: The functional $\Re \frac{f(z)}{z}$ is linear and continuous so

$$\min\left\{\Re\frac{f(z)}{z}, f \in TR\left(\frac{1}{2}\right)\right\} = \min\left\{\Re\frac{f_t(z)}{z}, t \in [-1, 1]\right\}.$$

Let f_t be given by (1). From Lemma 1 it follows that there exists the function $g_t \in ST(\frac{1}{2})$ which satisfies $\frac{f_t(z)}{z} = \sqrt{\frac{g_t(z)}{z}}$. Using the known inequality $\Re \sqrt{\frac{h(z)}{z}} > \frac{1}{2}$ for $h \in ST$ we obtain the conclusion of this theorem.

THEOREM 3. The radius of bounded rotation $r_{P'}$ of $TR(\frac{1}{2})$ is equal to $r_{P'} = \frac{\sqrt{2}}{2} = 0,707...$

PROOF. From the Krein-Milman Theorem we have

$$\min\left\{\Re f'(z), f \in TR\left(\frac{1}{2}\right), |z| = r\right\} > 0 \iff \min\left\{\Re f'_t(z), t \in [-1, 1], |z| = r\right\} > 0.$$

Let f_t be given by (1). Since $f_t \in ST(\frac{1}{2})$, there is

$$\frac{zf_t'(z)}{f_t(z)} \prec \frac{1}{1-z} \ .$$

It means that there exists a function ω_1 of the class $B = \{\omega \in \mathcal{A} : \omega(0) = 0, |\omega(z)| < 1, z \in \Delta\}$ such that

$$\frac{zf_t'(z)}{f_t(z)} = \frac{1}{1 - \omega_1(z)}.$$

Hence, we have

$$f_t'(z) = \frac{f_t(z)}{z} \cdot \frac{1}{1 - \omega_1(z)}.$$
(6)

From Theorem 1 it follows that

$$\Re \frac{f_t(z)}{z} > \frac{1}{2}, \ z \in \Delta,$$

and consequently

$$\frac{f_t(z)}{z} \prec \frac{1}{1-z}.$$

Therefore, there exists a function $\omega_2 \in B$ such that

$$\frac{f_t(z)}{z} = \frac{1}{1 - \omega_2(z)}. (7)$$

Finally, the function f'_t can be written in the form

$$f'_t(z) = \frac{1}{1 - \omega_2(z)} \cdot \frac{1}{1 - \omega_1(z)}.$$
 (8)

The condition $\Re f_t'(z) > 0$ is equivalent to the condition $|\operatorname{Arg} f_t'(z)| < \frac{\pi}{2}$. Using (8) and simple estimation we have

$$|\operatorname{Arg} f_t'(z)| = \left| \operatorname{Arg} \frac{1}{1 - \omega_2(z)} \cdot \frac{1}{1 - \omega_1(z)} \right| \le \max_{\omega \in B} 2 \left| \operatorname{Arg} \frac{1}{1 - \omega(z)} \right| \le 2 \arcsin|z|$$

Hence, if $2\arcsin|z| < \frac{\pi}{2}$ or equivalently $|z| < \sin\frac{\pi}{4}$ then $\Re f_t'(z) > 0$. The equality in (??) appears for $\omega_1(z) \equiv z$, $\omega_2(z) \equiv z$. Hence, from (7) we get the function $f_t(z) = \frac{z}{1-z}$ for which $\Re f'(z)$ has negative values while $|z| > \frac{\sqrt{2}}{2}$.

THEOREM 4. The radius of convexity in the direction of the imaginary axis $r_{CV(i)}$ of $TR(\frac{1}{2})$ is equal to $r_{CV(i)} = \sqrt{2\sqrt{3} - 3} = 0,68...$

PROOF. It is known that, if $f \in \mathcal{A}$ then

$$f \in CVR(i) \iff zf'(z) \in TR.$$

Hence

$$f \in CVR(i) \iff \Im z \Im z f'(z) \ge 0, \quad z \in \Delta.$$

Let $z \in \Delta$, $\Im z > 0$ and $f \in TR\left(\frac{1}{2}\right)$.

From the Krein-Milman Theorem

$$\min\left\{\Im zf'(z),f\in TR\left(\frac{1}{2}\right),z\in\Delta\right\}=\min\left\{\Im zf'_t(z),t\in[-1,1],z\in\Delta\right\},$$

where f_t is given by (1).

Now we use the theorem established by MacGregor in [3]

Theorem A. If $f \in ST(\frac{1}{2})$ then $f(\Delta_r)$ is convex for $r \leq \sqrt{2\sqrt{3}-3}$.

Since $f_t \in ST(\frac{1}{2})$, from Theorem A in particular it follows that the set $f_t(\Delta_r)$ is convex in the direction of the imaginary axis for $r \leq \sqrt{2\sqrt{3}-3}$.

We are going to prove that for $r > \sqrt{2\sqrt{3}-3}$ there exists a function f_{t_0} of the form (1) such that $\Im z \Im z f'_{t_0}(z) < 0$ for some $z \in \Delta_r$.

Let $G_t(z) \equiv z f_t'(z)$. We have $G_t(re^{i\varphi}) = re^{i\varphi} \frac{1 - tre^{i\varphi}}{(1 - 2tre^{i\varphi} + r^2e^{2i\varphi})^{\frac{3}{2}}}$. The argument of the tangent vector to the curve $\Gamma = \partial G_t(\Delta_r)$ in the point $G_t(r)$ is equal to

$$\arg\left(\frac{\partial G_t}{\partial \varphi}(r)\right) = \arg\left(i \cdot w_t(r)\right) = \frac{\pi}{2} + \arg w_t(r),$$

where $w_t(r) = \frac{r(1-tr-2r^2+t^2r^2+tr^3)}{(1-2tr+r^2)^{\frac{5}{2}}}$.

The inequality $w_t(r) \ge 0$ is true for all $t \in [-1, 1]$ if $r \le \sqrt{2\sqrt{3} - 3}$. For $r > \sqrt{2\sqrt{3} - 3}$ and $t_0 = \frac{1 - r^2}{2r}$ the inequality $w_{t_0}(r) < 0$ holds. It means that for $r > \sqrt{2\sqrt{3} - 3}$ the argument of the tangent vector to Γ in $G_{t_0}(r)$ is equal to $\frac{-\pi}{2}$. Hence, there exists φ_0 such that

$$\Im G_{t_0} < 0 \quad \text{for} \quad \varphi \in [0, \varphi_0) \ .$$

Furthermore, $f(\Delta_r)$ is convex in the direction of the imaginary axis in the disk $|z| < \sqrt{2\sqrt{3}-3}$ and this number is best possible. The extremal function is

$$f_{t_0}(z) = \frac{z}{\sqrt{1 - \frac{1 - r^2}{r}z + z^2}}$$
.

Using the similar method to that from the proof of Theorem 2, we estimate the radius of convexity in the direction of the real axis in $TR(\frac{1}{2})$. Koczan in [2] determined the representation formula for the class CVR(1). Namely

Theorem B. The function f belongs to CVR(1) if and only if $f \in \mathcal{A}$, f is real on (-1,1), and there exists $\beta \in [0,\pi]$ such that

$$\Re\left[(1-2z\cos\beta+z^2)f'(z)\right] > 0, \quad z \in \Delta.$$

We make use of the following fact

$$\max \left\{ \operatorname{Arg} \frac{1-z}{1-\zeta} : |\zeta| \le |z| < 1 \right\} = 2\arcsin|r|. \tag{9}$$

Indeed, from the maximum principle for analytic functions we have

$$\max\left\{\operatorname{Arg}\frac{1-z}{1-\zeta}: |\zeta| \leq |z| < 1\right\} = \max\left\{\operatorname{Arg}\frac{1-z}{1-\zeta}: |z| = |\zeta| < 1\right\}.$$

Using twice the inequality $\operatorname{Arg}(1-w) \leq \arcsin |w|$ for $w \in \Delta$ we obtain (9) .

THEOREM 5. The radius of convexity in the direction of the real axis $r_{CV(1)}$ of $TR(\frac{1}{2})$ satisfies the inequality $\sin \frac{\pi}{8} = 0.38 \dots < r_{CV(1)} \le \sqrt{2} - 1$.

PROOF. Let $f \in TR(\frac{1}{2})$. Then

$$\Re\left[(1 - 2z\cos\beta + z^2)f'(z)\right] = \int_{-1}^{1} \Re\left[(1 - 2z\cos\beta + z^2)f'_t(z)\right]d\mu(t).$$

From (8) we have

$$(1 - 2z\cos\beta + z^2)f_t'(z) = \frac{1 - 2z\cos\beta + z^2}{(1 - \omega_1(z))(1 - \omega_2(z))},$$

where $\omega_1, \omega_2 \in B$.

Let us consider the inequality

$$\left|\operatorname{Arg}\frac{1-2z\cos\beta+z^2}{(1-\omega_1(z))(1-\omega_2(z))}\right|<\frac{\pi}{2},$$

or equivalently

$$\left| \operatorname{Arg} \frac{1 - ze^{-i\beta}}{1 - \omega_1(z)} \cdot \frac{1 - ze^{i\beta}}{1 - \omega_2(z)} \right| < \frac{\pi}{2}. \tag{10}$$

We have $|\omega_k(z)| \leq |z|$, k=1, 2. From (9) it follows now that if $4\arcsin|z| < \frac{\pi}{2}$ then the inequality (10) is satisfied. Consequently, if $|z| < \sin\frac{\pi}{8}$ then

$$\Re\left[\left(1 - 2z\cos\beta + z^2\right)f_t'(z)\right] > 0. \tag{11}$$

This and Theorem B leads to $r_{CV(1)} \ge \sin \frac{\pi}{8}$. The extremal function in the inequality (11) does not have real coefficients so

$$r_{CV(1)} > \sin \frac{\pi}{8}.$$

Moreover, for the function

$$f(z) = \frac{z}{1 - z^2} = \frac{1}{2} \left(\frac{z}{1 + z} + \frac{z}{1 - z} \right) \in TR(\frac{1}{2})$$
 (12)

the set $f(\Delta_{r_0})$, $r_0 = \sqrt{2} - 1$ is convex in the direction of the real axis and the number r_0 is best possible. It results from the fact that the function

$$\frac{f(iz)}{i} = \frac{z}{1+z^2}$$

is convex in the direction of the imaginary axis in the set $i \cdot H = \{re^{i\theta} : 1 - r^2 > 2r | \cos \theta|\}$. Hence, the function (12) is convex in the direction of the real axis in the set H of the form $\{re^{i\theta} : 1 - r^2 > 2r | \sin \theta|\}$. Therefore $r_{CVR(1)} \le \sqrt{2} - 1$.

From given above theorems we obtain the corollaries concerning starlikeness and convexity of functions from $TR(\frac{1}{2})$.

COROLARY. The radius of starlikeness r_{ST} of $TR(\frac{1}{2})$ satisfies the inequality $\frac{\sqrt{2}}{2} \le r_{ST} \le \frac{\sqrt{7}}{3}$.

The left hand side inequality results from the fact that the functions of the class $\{f \in \mathcal{A}: \Re \frac{f(z)}{z} > \frac{1}{2}, z \in \Delta\}$ are starlike in the disk $\Delta_{\frac{\sqrt{2}}{2}}$, (see [7]) and from Theorem 2. The upper estimation is the consequence of the inequality proved in Theorem 1.

From Theorem 4 we obtain

COROLARY. The radius of convexity r_{CV} of $TR(\frac{1}{2})$ satisfies the inequality $r_{CV} \leq \sqrt{2} - 1$.

Bibliography

- Hallenbeck D. J. Convex hulls and extreme points of families of starlike and close-to-convex mappings / D. J. Hallenbeck // Pacific J. Math. 57. (1975). 167–176.
- Koczan L. Typically real functions convex in the direction of the real axis / L. Koczan // Annales UMCS 43. (1989). 23–29.
- [3] McGregor M. T. On three classes of univalent functions with real coefficients / M. T. McGregor // J. London Math. Soc. 39. (1964). 43-50.
- [4] Rogosinski W. W. Über positive harmonische Entwicklungen und typischreele Potenzreihen / W. W. Rogosinski // Math. Z. 35. (1932). 93–121.
- [5] Sobczak-Kneć M. Covering domains for classes of functions with real coefficients / M. Sobczak-Kneć, P. Zaprawa // Complex Variables and Elliptic Equations 52. No. 6. (2007). 519–535.
- [6] Szynal J. An extension of typically real functions, Annales / J. Szynal // UMCS 48. (1994). 193–201.
- [7] Tuan P.D. Radii of starlikeness and convexity for certain classes of analytic functions / P. D. Tuan, V. V. Anh // J. Math. Anal. Appl. 64. (1978). 146–158.

Department of Applied Mathematics Lublin University of Technology ul. Nadbystrzycka 38D 20-618 Lublin, Poland

Email: m.sobczak-knec@pollub.pl Email: p.zaprawa@pollub.pl